Cyber Security Implications of Quantum Computing: Shor's Algorithm and Beyond

Anwar Mohammed^{1,2} ¹ Rakbank, National Bank of U.A.E ² Singhania University, India

Corresponding Email: <u>anwarmohammed567@outlook.com</u>

Abstract

This study investigates the significant cybersecurity risks associated with quantum computing, particularly through Shor's Algorithm, which poses a threat to established encryption standards such as RSA and ECDSA in industries such as finance, government and healthcare. The goal of this review is to assess the extent to which "quantum key distribution (QKD)" and "post-quantum cryptography (PQC)" work as countermeasures against these quantum threats. It addresses gaps in existing literature by proposing resilient cryptographic protocols, emphasizing lattice-based and multivariate cryptography. Methodologically, the study employs a comprehensive literature review and integrates case studies from block chain, government communications, and healthcare to analyze vulnerabilities and proposed solutions. Results highlight the critical need for integrating quantum-safe cryptographic methods to ensure the security and resilience of digital infrastructures in an increasingly quantum-enabled landscape. Ultimately, while quantum computing offers transformative potential, proactive adoption of PQC and QKD is essential to mitigate risks and maintain secure communications amidst advancing quantum technologies. Keywords: Quantum computing, Shor's Algorithm, RSA, post-quantum cryptography, quantum key distribution (QKD), cybersecurity

1. Introduction

Quantum bits or qubits are entangled and capable of being in several states simultaneously (superposition), which allows quantum computing to take advantage of the principles of quantum physics to surpass classical computers [1]. This enables enormous volumes of data to be processed in parallel by quantum computers, providing exponential speedups for certain algorithms such as Grover's database search and Shor's factoring of large numbers [2]. Ion traps and superconducting circuits are examples of physical implementations that exhibit the way in which quantum computing can be used to enhance computational accuracy and efficiency [3].

Quantum computing represents a transformative frontier in technology, poised to revolutionize fields from chemistry and materials science to cryptography and artificial intelligence [4]. Quantum computers, by simulating highly entangled quantum states, promise breakthroughs in understanding complex molecules, designing novel materials, and exploring fundamental physics beyond current computational capacities [5]. Despite challenges in scaling quantum devices and error correction, ongoing research and investment suggest that quantum computing holds immense promise to revolutionize scientific inquiry and technological innovation in the coming decades [6].

Quantum computing and cybersecurity are intricately linked, as the evolving cyber threat landscape necessitates advanced encryption methods to safeguard sensitive information [7]. While standard encryption protects the confidentiality, integrity and authenticity of data, quantum computing challenges these conventional techniques by using quantum physics to conduct complicated computations [8]. Collaboration is required to secure digital communications as the incorporation of quantum computing into cybersecurity holds promising potential for improvements in "quantum-safe cryptography" and "quantum key distribution (QKD)". However, it also introduces new challenges and vulnerabilities that must be carefully addressed [9].

Cybersecurity is essential in the digital age to safeguard monetary transactions, confidential information and important infrastructure against cyber threats [10]. As reliance on digital platforms grows, robust cybersecurity measures ensure privacy, data integrity and trust in online interactions, safeguarding against evolving cyber-attacks with far-reaching consequences [11]. Cybersecurity continues to be essential to digital resilience and confidence in the interconnected digital ecosystem in a world where cyber threats are ever-changing.

Shor's algorithm efficiently factors huge integers exponentially quicker than classical algorithms, posing a serious threat to cybersecurity and perhaps compromising wellestablished public-key cryptography techniques such as "RSA" and "ECC" [12]. In addition to Shor's algorithm, other quantum algorithms designed for anomaly detection, pattern recognition, and quantum machine learning have the potential to enhance threat detection capabilities and bolster cybersecurity defenses [13]. Quantum computing has a revolutionary effect on cybersecurity practices, as evidenced by effective identification of malicious activities and adaptive responses through the integration of quantum algorithms into cybersecurity systems [14].

The emergence of quantum computing, as demonstrated by "Shor's Algorithm", presents a serious threat to existing cybersecurity protocols since it factors huge integers efficiently, compromising well-established public-key cryptography systems such as "RSA" and "ECC". Despite the promising advancements in quantum-safe cryptography and quantum key distribution, there remains a critical research gap in effectively

integrating these solutions to counter the emerging vulnerabilities introduced by quantum algorithms. The main aim of this review is to explore the cybersecurity implications of quantum computing, focusing on Shor's Algorithm and beyond, while highlighting the need for developing robust post-quantum cryptographic methods and adaptive cybersecurity strategies to protect sensitive data in an evolving digital landscape.

2. Method

2.1 Search Strategy

In this review, the author utilized previous 7-year researches that were published in peer-reviewed journals. Data was searched on widely used databases such as PubMed, NIH, and Google Scholar. Time frame filters were then applied to improve the review. In order to conduct this review, data was collected with a specific focus on publications released between 2018 and 2024 investigating Cyber Security Implications of Quantum Computing: Shor's Algorithm and Beyond. As indicated in Table 1 below, the author chose particular search approaches in order to obtain the data.

S.	Search Strategy
No.	
1.	("Quantum computing") AND ("Post-Quantum Cryptography") OR ("Quantum-
	Resistant Cryptography") AND ("Classical Cryptography")
2.	("Shor's Algorithm") AND ("Cyber Security") AND ("AI in Cyber Attacks")
3.	("Quantum Bits") AND ("Superposition ") AND ("Entanglement") AND ("RSA
	Encryption") AND ("Quantum Fourier Transform (QFT)")
4.	("Quantum Key Distribution (QKD)") AND ("Block chain Security") AND
	("Quantum-Resistant Block chain Protocols") AND ("Quantum Computing in
	Healthcare")

Table 1: Search	Strategies
-----------------	------------

2.2 Selection Criteria

Table 2 represents the inclusion and exclusion criteria of the studies that were utilized to review, focusing on the Cyber Security Implications of Quantum Computing: Shor's Algorithm and Beyond.

Table 2: Inclusion and Exclusion Criteria

Inclusion Criteria	Exclusion Criteria
Studies that were published in journals	Studies that were published in journals

with peer-reviewing policies provided by the publishers were included.	with peer-reviewing policies not provided by the publishers were excluded.
The studies included in the review were selected based on having the keywords Cyber Security, Quantum Computing and Shor's Algorithm.	The studies not having the specific keyword Cyber Security, Quantum Computing and Shor's Algorithm were excluded from the review.
The studies published in the last 7 years from 2018 to 2024 were included in this review.	The studies performed or papers published prior to 2018 were excluded.
Only studies that were accessible in full-text format for the public view were included.	Studies not accessible in open access format in any authorized database were excluded.

2.3 Data Analysis

15 studies were selected based on their titles, publishers and main objective of the review aligned with the current study's rationale. The analysis of the obtained data from the 15 articles was conducted using thematic analysis as presented in the discussion. The data was obtained by utilizing recurrent keywords in the paper such as Cyber Security, Quantum Computing and Shor's Algorithm.

2.4 Quality Assessment

The review addresses the study quality based on the Cyber Security Implications of Quantum Computing: Shor's Algorithm and Beyond. It includes the criteria on which the chosen publications were most relevant to the review aim and were published between 2018-2024. Availability of full-text studies was another important requirement that was given priority. These criteria contribute to the quality and reliability of the synthesized data by developing discussions and conclusions on the efficacy of the studies included in this review. The review's main objective is to provide a thorough understanding of Cyber Security Implications of Quantum Computing: Shor's Algorithm and Beyond while incorporating the most recent data into consideration.

3. Result

Table 3 outlines the included researches and provides insights into the Cyber Security Implications of Quantum Computing: Shor's Algorithm and Beyond.

Table 3: Included Studies

S. No	Autho	Journal	Title	Objective	Results
	r				
1.	[15].	Journal of Big data.	Cybersec urity data science: an overview from machine learning perspecti ve.	The research aims to explore cybersecurity data science by gathering data from cybersecurity sources and using data-driven analytics to develop more effective and intelligent security solutions, culminating in a machine learning- based multi- layered framework for cybersecurity modeling.	The study provides insights into the role of data science in cybersecurity, discusses associated research issues and future directions and presents a machine learning framework to enhance intelligent decision- making for protecting systems from cyber-attacks.
2.	[16].	EPJ Quantum Technology.	Industry quantum computin g applicati ons.	The research aims to advance the quantum computing ecosystem in Europe, particularly in Germany, by establishing a collaborative framework through QUTAC, encompassing diverse industries and stakeholders, to ensure digital sovereignty, security and	The study identifies 24 high-value use cases across various sectors and formalizes them into reference problems and benchmarks, guiding technological progress and commercialization, ultimately benefiting all ecosystem participants, including suppliers, system integrators,

				competitiveness.	software
				competitiveness.	developers, users, policymakers, funding program managers, and investors.
3.	[17].	Nuclear Physics B.	Quantum computin g with classical bits.	The research aims to establish a bit- quantum map that relates classical probabilistic systems, such as Ising spins, to quantum systems (qubits), demonstrating how classical systems can replicate quantum operations and entanglement.	The study reveals that static memory materials using Ising spins can perform quantum operations such as Hadamard and CNOT gates, suggesting that features of quantum computation can be realized in classical systems, including neural networks and neuromorphic computing, without needing low temperatures or isolated entities.
4.	[18].	Physical Review A	Entangle ment activatio n from quantum coherenc e and superposi tion.	This research aims to explore the limitations of converting quantum coherence into entanglement and to test the feasibility of such conversion within specific frameworks.	The study establishes a no-go theorem for general superposition resource theories, demonstrates possible entanglement activation using a quantum controlled-not gate within the coherence framework and reveals that trace

					norm entanglement
					is not a strong
					entanglement
					monotone.
5.	[19].	IET	Present	This research aims	The study
		Quantum	landscap	to explore the field	highlights the
		Communica	e of	of quantum	emergence of
		tion	quantum	computing,	practical quantum
			computin	covering its	computing
			g	fundamentals,	applications, the
				applications,	availability of first-
				hardware	generation
				technologies and	quantum
				the growing trend	computers via
				of investments and	cloud services and
				patents,	the increasing
				emphasizing the	investments and
				potential threat to	patents in the field
				cryptography.	due to the
					cryptographic
					threat posed by
					quantum
	F 7	- 11	~		computers.
6.	[20].	Proceedings	Challeng	The research aims	The study
		of the IEEE	es and	to explore and	highlights the
			opportun	highlight IBM's	significant
			ities of	perspective on	advancements in
			near- term	noisy near-term quantum	building experimental
			quantum	computing	quantum
			computin	systems,	computing systems
			g	emphasizing	capable of
			systems.	quantum software	surpassing classical
			5,500110.	development,	simulation limits. It
				cloud accessibility,	showcases IBM's
				benchmarking	efforts in providing
				methodologies,	cloud-based access
				error correction	to quantum
				strategies,	resources,
				quantum circuit	benchmarking
				complexity and	quantum systems,

7.	[21].	Int. J. Adv. Trends	An overview	early quantum application feasibility.	addressing error correction challenges, and laying foundations for practical quantum applications despite current limitations in fault tolerance. The study successfully
		Comput. Sci. Eng.	of quantum cryptogra phy and shor's algorithm	quantum cryptography mechanisms, investigate the interplay between quantum and classical encryption schemes, and provide insights into Shor's Algorithm's potential in quantum computation.	elucidates quantum cryptography's principles, demonstrating encryption through quantum particle properties and highlighting the complexity of Shor's Algorithm, thereby informing researchers on current advancements and encouraging further exploration in quantum cryptography and computation.
8.	[22].	Modern Electronics Devices and Communica tion Systems: Select Proceedings of MEDCOM	Post- quantum cryptogra phy: A solution to the challenge s of classical encryptio n	The research aims to explore the vulnerabilities of existing cryptographic algorithms (RSA, AES, ECC) to quantum attacks and propose solutions using post-quantum	Thestudyintroducesquantumcomputing's impactonclassicalcryptographicalgorithms such asRSA, AES and ECChighlightingtheirvulnerabilitytoquantumattacks. It

			algorithm	cryptography	emphasizes the
			S	(PQC) to secure	emergence of PQC
			5	online transactions	algorithms as a
				and	secure alternative
				communications.	to safeguard
				communications.	encrypted
					information against
					quantum threats.
9.	[23].	In 2020 9th	A review	The objective of	The paper
	[-0].	Internation	paper on	the review paper is	sequentially
		al	DES,	to provide a	reviews DES,
		Conference	AES, RSA	concise overview	AES,and RSA,
		System	encryptio	on three	highlighting their
		Modeling	n	commonly used	operational
		and	standard	cryptographic	mechanisms and
		Advanceme	s.	algorithms: DES	discussing their
		nt in		and AES and RSA.	roles in achieving
		Research		It aims to explain	cryptographic
		Trends		the historical	security objectives.
		(SMART)		background, key	It clarifies the
				operations,	relationships
				strengths,	between symmetric
				weaknesses and	and asymmetric
				how these	algorithms,
				algorithms achieve	providing insights
				security goals such	into potential
				as confidentiality	future research
				and integrity.	directions in the
					field of
					cryptography.
10.	[24].	Al'adzkiya	Utilizatio	To evaluate the	The study
		Internation	n of the	effectiveness of	highlights the
		al of	RSA	RSA algorithm in	critical role of RSA
		Computer	Algorith	enhancing data	in securing
		Science and	m in	security for e-	communication
		Information	Business	commerce	and transactions in
		Technology	Commun	applications,	e-commerce,
		(AIoCSIT)	ication in	considering its role	emphasizing the
		Journal.	Making	in providing	need for additional
			E-	confidentiality,	security measures
			commerc	integrity and	alongside MD5 and

			е	authentication.	SHA algorithms to
			Applicati	uutileittieution.	safeguard sensitive
			ons.		business
					information.
11.	[25].	Nature	Coherent	To develop a	The research
	1-01	communica	phase	method for	introduces
		tions	transfer	simultaneous	interferometry
			for real-	quantum key	techniques from
			world	streaming and	frequency
			twin-field	control of optical	metrology,
			quantum	channel length in	demonstrating
			key	long-distance fiber	effective key
			distributi	networks,	streaming over a
			on.	addressing	206 km field-
				challenges in real-	deployed fiber with
				world quantum	65 dB loss. It
				communication.	achieves a
					quantum-bit-error-
					rate below 1%,
					significantly
					improving the
					stability of
					quantum
					communication
					channels in
					practical
					applications.
12.	[26].	Physical	Universal	The research aims	The study
		Review X.	limitatio	to analyze the	demonstrates that
			ns on	distribution of	multipartite private
			quantum	secret keys in both	states derived from
			key	bipartite and	the protocol must
			distributi	multipartite	be genuinely
			on over a	settings via	multipartite
			network.	quantum	entangled. It
				networks,	provides bounds on
				establishing	secret-key and GHZ
				bounds on	state distillation
				achievable rates. It	rates from
				introduces a	multipartite
				framework for	quantum states and

				multiplex	upper bounds on
				quantum channels	secret-key-
				linking multiple	agreement
				parties, defining	capacities for
				capacities for	teleportation-
				secret-key-	covariant multiplex
				agreement	quantum channels
				protocols and	based on
				exploring the	entanglement
				performance of	measures of their
				quantum key	Choi states.
				repeaters and	chor states.
				MDI-QKD setups.	
13.	[27].	In PACIS	Quantum	This research aims	The study
-0-	L=/J.		Computi	to explore the	concludes that
			ng-The	impact of quantum	while quantum
			Impendi	computing on	computing poses
			ng End	block chain	significant threats
			for the	security, focusing	to block chain
			Block	on the threats	security, current
			chain?	posed by Grover's	research suggests
				and Shor's	that implementing
				algorithms, and to	post-quantum
				review existing	cryptographic
				countermeasures,	methods can
				particularly post-	mitigate these
				quantum	risks, ensuring the
				cryptography.	block chain's
					resilience in the
					face of quantum
					advancements.
14.	[28].	Strategic	Surviving	To assess the	Experimental
		Studies	the	quantum threat to	quantum
		Quarterly	quantum	cybersecurity by	computers exhibit
			cryptocal	examining the	potential to
			ypse.	current	outperform
				capabilities of	classical
				quantum	supercomputers in
				computing and the	specific tasks,
				development of	posing a credible
				cryptographic	threat to current

 Internation al Journal of Fuzzy Logic and construction of Computing and cryptographic engineering. Internation al Journal of Fuzzy Logic and e Systems. Internation al Journal of Fuzzy Logic and e Systems. Systems. Internation guantum computing quantum security agroach combining fuzzy Logic and e Systems. Systems. Security of Fuzzy Logic and e Systems. Systems. Syst						J: _:+ _] ···
15.[29].Internation al Journal of Fuzzy IntelligentAnalytic review of healthcarThis research aims securityThe study proposes a novel hybrid approach combining Fuzzy15.[29].Internation al Journal of Fuzzy IntelligentAnalytic review of bealthcarThis research aims security of healthcareThe study proposes a novel hybrid approach combining Fuzzy16.[29].Internation al Journal of Fuzzy IntelligentSoftwareSoftware (HS) softwareAHP (FAHP) and security environments by g security evaluating and recommending resources.F-TOPSIS methodologies to assess HS security effectively with 10 quantum security algorithms. The findings suggest this approach is accurate and practical for					countermeasures.	mathematical complexity. Ongoing research focuses on certifying quantum-safe cryptographic alternatives and developing quantum networks to enhance cybersecurity, with optimistic indications that countermeasures may outpace the quantum threat, contingent on
15.[29].Internation al Journal of Fuzzy IntelligentAnalytic review of healthcarThis research aims securityThe study proposes a novel hybrid approach combining Fuzzy15.[29].Internation al Journal of Fuzzy IntelligentAnalytic review of bealthcarThis research aims security of healthcareThe study proposes a novel hybrid approach combining Fuzzy16.[29].Internation al Journal of Fuzzy IntelligentSoftwareSoftware (HS) softwareAHP (FAHP) and security environments by g security evaluating and recommending resources.F-TOPSIS methodologies to assess HS security effectively with 10 quantum security algorithms. The findings suggest this approach is accurate and practical for						e
15.[29].Internation al Journal of Fuzzy Logic and IntelligentAnalytic review of healthcarThis research aims to enhance the security of healthcareThe study proposes a novel hybrid approach healthcare15.[29].Internation al Journal of Fuzzy Logic and IntelligentAnalytic review of healthcareThis research aims security of and security of approachThe study proposes a novel hybrid approach16.Fuzzy Logic and Intelligente softwareSoftware under quantum computin g security evaluating and recommending robust security algorithms. The findings suggest this approach is accurate and practical for						in both quantum
15.[29].Internation al Journal of Fuzzy IntelligentAnalytic review of healthcarThis research aims to enhance the security of healthcareThe study proposes a novel hybrid approach combining Fuzzy15.[29].Internation al Journal of Fuzzy IntelligentAnalytic review of bealthcarThis research aims security of healthcareThe study proposes a novel hybrid approach combining Fuzzy16.Logic and Intelligentehealthcare softwarecombining Fuzzy AHP (FAHP) and F-TOPSIS17.Systems.by using quantum computinunder quantum computing (QC) environments by g security es.F-TOPSIS methodologies to assess HS security effectively with 10 quantum security algorithms. The findings suggest this approach is accurate and practical for						cryptographic
ofFuzzyhealthcarsecurityofapproachLogicandehealthcarecombiningFuzzyIntelligentsoftwaresoftware(HS)AHP (FAHP) andSystems.byusingunderquantumF-TOPSISquantumcomputing(QC)methodologiestocomputing securityevaluatingandfectively with 10g securityes.robustsecurityalgorithms.Theindingssuggestindingssuggestindingssuggestisisisisisaccurateandpracticalforisisisisis	15.	[29].	Internation	Analytic	This research aims	
Logic and Intelligent Systems.ehealthcare softwarecombining Fuzzy AHP (FAHP) and F-TOPSISSystems.by using quantum computing g security g security evaluating es.under quantum computing recommending es.methodologies assess HS security effectively with 10 quantum security algorithms. The findings suggest this approach is accurate and practical						
Intelligent Systems.software by using quantum g security es.software (HS)AHP (FAHP) and F-TOPSIS methodologies to assess HS security effectively with 10 quantum security algorithms. The findings suggest this approach is accurate and practical for			-		•	
Systems.by using quantumunder quantum computing (QC)F-TOPSISquantumcomputing (QC)methodologies to assess HS securityg securityevaluating and techniqueffectively with 10 quantum securityes.robust security measures.algorithms. The findings suggest this approach is accurate and practical for			e	-		U U U
quantum computin g security techniqucomputing environments(QC) methodologiesmethodologiesto assessHS security effectivelywith 10 quantumtechniqu es.recommending robustquantum security algorithms.findingssuggest this approachii <t< th=""><th></th><th></th><th>-</th><th></th><th></th><th></th></t<>			-			
computin g security techniqu es.environments by evaluating and recommending measures.assess HS security effectively with 10 quantum security algorithms. The findings suggest this approach is accurate and practical for			595101115.		-	
g security techniqu es.evaluating recommending robust measures.effectively with 10 quantum security algorithms.noiseg security techniqu es.es.effectively with 10 quantum security algorithms.noisenoisenoise robust measures.effectively with 10 quantum security algorithms.noisenoise robust measures.algorithms.noisenoise robust measures.noise robust robust measures.noisenoise robust robustnoise robust robust robust robustnoisenoise robustnoise robust robust robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robustnoisenoise robustnoise robust				-		Ũ
es. robust security algorithms. The findings suggest this approach is accurate and practical for				-	evaluating and	-
measures. findings suggest this approach is accurate and practical for				techniqu		
this approach is accurateaccuratepracticalfor				es.	5	0
accurate and practical for					measures.	
practical for						
integrating highly						integrating highly

		secure solutions	software without
		compromi	
		experience	e.

4. Discussion

4.1Cyber Security and Quantum Computing: Understanding the Current Landscape

Baseri et al., highlights the increasing interconnectivity and autonomy in systems have made them more susceptible to cyber-attacks, with cybercriminals leveraging technologies such as IoT, malware, ransomware and AI to launch sophisticated and powerful attacks. The study aims to address the challenges of defending against AI as a malicious tool by identifying, analyzing and classifying novel threats that are highly targeted, well-trained and large-scale, utilizing AI for malicious purposes [13].

The study conducted in 2020 emphasizes the importance of developing robust frameworks using advanced data analysis to enhance security operations intelligently. It employs multi-layered approaches, starting from the collection of diverse cybersecurity data sources such as network logs, firewall logs and host machine data. Through meticulous processing and preparation, including normalization and feature engineering, the framework ensures data quality. Machine learning plays an essential role for building and customizing models to detect anomalies, classify threats and predict security incidents, with an emphasis on incremental learning and dynamic updates to adapt to emerging threats. This comprehensive strategy aims to fortify cybersecurity measures effectively [15].

On the Contrary, quantum computing holds substantial impact across various industries. The applications span optimization in production and logistics, simulate complex engineering designs and enhance security through post-quantum cryptography. Industries such as automotive, manufacturing, aerospace and insurance are adopting quantum-enhanced solutions for optimizing vehicle routing, production planning and risk assessment, aiming for increased efficiency, faster problem-solving and higher accuracy in complex problem-solving scenarios [16].

4.2 Quantum Computing: Fundamental Concepts and Future Prospects

The study conducted in 2019 states that quantum computing uses "quantum bits or qubits", which in contrast to classical bits can exist in superposition states. It employs probabilistic computing principles where operations on qubits are non-commutative

and unitary transformations, enabling parallel processing and potentially outperforming classical deterministic computing in certain tasks by encoding complex probabilistic distributions [17].

Qiao et al., demonstrated through experimental setups in quantum optics that coherence can be activated into entanglement using precise control over polarization states and an optical CNOT gate. The study demonstrates direct correlation between coherence and entanglement in quantum systems, revealing that higher initial coherence leads to greater entanglement activation, showcasing the fundamental role of coherence in quantum information processing through controlled optical steps [18].

On the other hand, the current state of quantum computing showcases significant advancements with major tech companies such as IBM, Google, Rigetti leading in superconducting circuits, essential for platforms such as IBM Quantum Experience, offering access to real quantum computers and simulators. Additionally, trapped ion technology is emerging, leveraging charged atoms in electromagnetic fields to manipulate qubits precisely. Alternative approaches such as topological quantum computing and photon-based technologies are also promising, aiming to enhance precision and improve scalability [19].

Moreover, the current state of quantum computing reflects significant advancements including hybrid quantum-classical algorithms tailored for machine learning and quantum chemistry applications. These algorithms leverage quantum circuits for nonlinear feature mapping in classification and "variational quantum eigensolvers (VQE)" for molecular energies. Experimental implementations demonstrated error mitigation techniques and optimizing trial states but challenges in scalability and reliable hardware persist, emphasizing ongoing efforts for practical quantum solutions [20].

4.3 Shor's Algorithm: Quantum Computing's Impact on Cryptography

"Shor's Algorithm, formulated by Peter Shor in 1994", revolutionized quantum computing by providing an efficient method for factorizing large integers. The algorithm leverages the power of quantum computation to efficiently find the prime factors of a given integer, a task that forms the foundation of several encryption schemes including "RSA". It utilizes the "Quantum Fourier Transform (QFT)" and period-finding techniques and can determine the period of a function, leading to the identification of prime factors with high efficiency. Quantum computers, operating in superposition states, process vast amounts of information simultaneously, outperforming classical computers in specific tasks. Shor's Algorithm highlights quantum computation's potential to solve complex mathematical problems, particularly in cryptography [21].

A study conducted in 2020 states that Shor's Algorithm, efficiently factorizes large numbers, essential for breaking RSA encryption. Unlike classical computing, which faces exponential complexity in factorization, Shor's Algorithm uses QFT and quantum parallelism to exploit superposition and entanglement, presenting a serious challenge to established encryption methods. This breakthrough highlights the exponential speedup of quantum computing, suggesting that as quantum technology advances, breaking current cryptographic standards could become significantly easier, necessitating updated cryptographic protocols to counter potential threats [30].

The Key differences between Classical Cryptography and Quantum-Resistant Cryptography are enlisted in Table 3 [22].

Table	4:	Differences	between	classical	cryptography	and	quantum-resistant
crypto	graț	ohy					

Aspect	Classical	Quantum-Resistant	
	Cryptography	Cryptography	
Computational Basis	Relies on computational	Focuses on computational	
	problems that are hard	problems that are	
	for classical computers to	believed to be hard for	
	solve efficiently, such as	both classical and	
	factoring large numbers	quantum computers,	
	(RSA), discrete	including lattice-based	
	logarithms (DH, DSA).	problems, code-based	
		problems, hash-based	
		cryptography and	
		multivariate	
		cryptography.	
Security Posture	Vulnerable to quantum	Designed to be secure	
	attacks	against attacks from both	
		classical and quantum	
		computers	
Algorithms	RSA, Diffie-Hellman	Includes Lattice-based	
	(DH), Digital Signature	(e.g., LWE, NTRU), code-	
	Algorithm (DSA), Elliptic	based (e.g., McEliece	
	Curve Cryptography	cryptosystem), hash-	
	(ECC) and symmetric	based (e.g., Merkle tree)	
	encryption algorithms	and multivariate	
	such as AES (Advanced	cryptography	
	Encryption Standard).		

Key Sizes	128-bit to 4096-bit)	Often requires larger key sizes (several thousand bits) to achieve similar security levels.		
Resistance to	Vulnovable: augeentible to	Specifically designed to		
	Vulnerable; susceptible to	Specifically designed to		
Quantum Attacks	Shor's and Grover's	resist attacks from		
	algorithms	quantum computers		
Implementation	Well-understood, widely	Ongoing research;		
Challenges	implemented	challenges in		
	-	performance optimization		
		and standardization		
Adoption and	Established, widely	Emerging; efforts in		
Standardization	adopted, standardized	standardization (e.g.,		
		NIST PQC		
		Standardization)		

4.4 Case Studies

Case Study 1: Vulnerability of RSA Encryption

RSA encryption stands out as an essential asymmetric encryption scheme developed by Rivest, Shamir and Adleman in 1977. "RSA" is based on two mathematically linked keys: a public key for encryption and a private key for decryption. This is in contrast to symmetric encryption techniques such as "AES" and "DES". The process involves generating large prime numbers, computing the modulus and selecting appropriate exponents to ensure security. The advantages of RSA lies in its capacity to provide digital signatures, guarantee non-repudiation in communications and securely exchange symmetric encryption keys. However, RSA is slower in computational speed compared to symmetric algorithms due to its intensive mathematical operations, which can impact performance in large-scale data encryption scenarios [23].

Additionally, Shor's algorithm poses a serious risk to established asymmetric cryptosystems such as RSA and Rabin by efficiently breaking their encryption and digital signature schemes. This capability allows quantum computers to derive private keys from public keys, allowing decryption of encrypted data and compromising the security of digital signatures. Experimental demonstrations on on IBM Quantum Experience confirm the feasibility of these attacks for moderate-sized integers. Future advancements in quantum computing aim to extend this threat to larger key sizes,

emphasizing the urgent need for quantum-resistant cryptography to secure sensitive communications against emerging quantum threats [31].

A study conducted in 2020 clarifies that RSA's asymmetric cryptographic algorithm ensures secure transactions by using a public-private key pair. This technology facilitates secure online transactions, protecting sensitive financial and personal information exchanged over networks. It has enabled the growth of e-commerce by ensuring data security, essential for building customer confidence and adhering to legal obligations in the banking and digital commerce industries [24].

Case Study 2: "Quantum Key Distribution (QKD)"

The implementation of "Quantum Key Distribution (QKD)" involves mitigating various sources of noise and ensure secure communication channels through advanced techniques such as twin-field QKD (TF-QKD) and active phase-noise cancellation, ensuring secure communication channels. Practical implementations integrate ultra-stable optical clocks for precise synchronization and utilizes wavelength division multiplexing in optical fiber networks to separate signals effectively. Techniques such as Doppler noise cancellation and optical filtering are essential for reducing background noise and enhancing signal purity, ensuring reliable quantum communication in diverse environmental conditions [25].

In addition to this, several notable QKD projects globally demonstrate significant advancements in satellite-based quantum communication. The Chinese quantum satellite Micius, launched in 2016, demonstrated long-distance entanglement distribution and quantum teleportation experiments, marking a milestone in quantum cryptography. European initiatives such as SOCRATES and Galassia have also contributed substantially. SOCRATES validated microsatellite capabilities with low QBER and high polarization, while Galassia demonstrated strong photon correlations in orbit. Additionally, European missions such as Alphasat and LAGEOS2 focused on preserving quantum coherence over extensive distances, essential for secure satellite-based communications. These projects highlight international collaboration towards establishing secure global quantum communication networks [32].

Das et al., states that QKD faces several challenges in achieving secure conference key agreements due to the necessity of genuine multipartite entanglement, as biseparable states are insufficient for this purpose. The distillation of maximally entangled states, such as the Φ GHZ₃ state from Φ W₃ states, is complex and often probabilistic, with lower bounds on conversion rates indicating inefficiencies. Additionally, practical implementation complexities arise from non-integer real number asymptotic key rates that vary with privacy parameters, computational challenges in optimizing upper bounds over biseparable states and the influence of subsystem merging and splitting on secret-key-agreement rates. Practical QKD also involves overcoming noise and ensuring

secure communication over multiplex quantum channels further complicate practical QKD, emphasizing the delicate balance between theoretical potential and practical limitations [26].

Case Study 3: Block chain and Quantum Computing

Quantum computing poses potential threats to block chain security through Grover's and Shor's algorithms, potentially compromising cryptographic protocols and data immutability. Grover's algorithm, though not yet practical, could enhance hash function attacks, enabling undetected data manipulation. Shor's algorithm, while more powerful, remains far from being executable on existing quantum hardware but ultimately threaten asymmetric cryptography in block chain. Researchers propose PQC and quantum cryptography as viable solutions. PQC aims to substitute vulnerable cryptographic algorithms with quantum-resistant alternatives, leveraging physical laws for long-term security, yet challenges in scalability of quantum networks persist.Ongoing research is essential to safeguard block chain and cryptocurrency integrity against evolving quantum risks [27].

The primary concern lies in the vulnerability of the "elliptic curve digital signature algorithm (ECDSA)" used for verification of transaction and authorization. Quantum computers, capable of executing Shor's algorithm, could decipher private keys from public keys within the block interval of each cryptocurrency. This capability may allow quantum attackers to forge transactions or alter the block chain by generating new transactions using derived private keys. The severity of these threat varies across cryptocurrencies based on factors such as block interval times, the number of qubits required for attacks and potential mitigation strategies such as multi-signature wallets to increase security [33].

Furthermore, efforts to develop quantum-resistant block chain protocols are focused on addressing vulnerabilities in current systems vulnerable to quantum attacks, especially focusing in node-to-node communication and transaction signatures utilizing "ECDH and ECDSA" algorithms. The study proposes two strategies: quantum block chain networks utilizing technologies such as "QKD and entanglement and post-quantum block chain networks" using robust algorithms such as Falcon-512 signatures and postquantum TLS tunnels. Implemented on the LACChain Besu Network, this framework integrates quantum-random generators for entropy and ensures compatibility with Ethereum-based networks. Its goal is to protect existing block chain assets against future quantum threats while enhancing overall network security and resilience [34].

Case Study 4: Secure Communication in Government and Military

Government and military communications must utilize encryption to safeguard data from illegal access, interception and manipulation. Encryption techniques such as TLS and IPsec protect data both in transit and at rest by establishing secure connections, authenticate communicating parties and encrypt network traffic to maintain confidentiality and integrity. Additionally, data-at-rest encryption techniques such as full-disk encryption safeguard stored information on devices, ensuring confidentiality even if physical or digital storage is compromised. Overall, Robust encryption technologies are essential for these organizations to mitigate cyber threats and ensure the security of critical communications and infrastructure [35].

Additionally, government networks face an imminent threat from quantum computing, which could compromise current encryption methods including those used by governmental agencies such as RSA. To counter this risk, governmental agencies are advancing strategies for quantum-resistant encryption, centered on PQC protocols designed to withstand quantum attacks. These efforts involve transitioning to secure alternatives such as lattice-based and multivariate cryptography. The goal is to safeguard sensitive networks from potential quantum attacks, underscoring the critical need to implement and validate new cryptographic standards effectively [28].

Case Study 5: Quantum Computing in Healthcare Data Security

Quantum computing holds immense potential for healthcare innovation by utilizing concepts from quantum physics such as superposition and entanglement. It promises to transform compute-intensive tasks such as developing medicines, customized health care, genome sequencing, diagnostic imaging and operational efficiency. By enabling real-time processing of vast amount of data, quantum computing aims to enhance efficiency and accuracy in healthcare. Despite the challenges of network overhead and the need for performance assessment before deployment, quantum computing presents a promising avenue for transforming the healthcare industry [36].

The study conducted in 2023 explores the risks posed by quantum computing to healthcare data encryption, highlighting potential breach scenarios within large healthcare organizations due to the current encryption vulnerabilities to quantum attacks. Efforts to mitigate these risks focus on adopting post-quantum cryptographic methods such as the unified Fuzzy AHP-TOPSIS methodology. This approach aims to enhance the security of healthcare software systems by integrating fuzzy logic to manage uncertainty and selecting robust encryption alternatives such as QA6, which promises heightened security and user satisfaction [29].

5. Limitation and Future Implications

This literature review emphasizes the cybersecurity risks posed by Shor's Algorithm and explores post-quantum cryptography, potentially overlooking emerging quantum

algorithms. However, it offers a foundational understanding of quantum computing principles and cryptographic vulnerabilities but may not provide specific implementation strategies for quantum-safe solutions. Future research could address these limitations by integrating quantum-safe cryptographic protocols in order to mitigate vulnerabilities posed by quantum algorithms ensuring secure digital communications. Additionally, developing medicines, tailored treatment and diagnostic imaging could be improved by the use of quantum computing in healthcare. Meanwhile, block chain and cryptocurrencies face the challenge of adopting quantum-resistant protocols to protect transactions and data integrity. Furthermore, government and military sectors must adopt quantum-resistant encryption to safeguard sensitive communications and infrastructure. Overall, these developments will drive innovation across industries while shaping policy frameworks to address emerging quantum threats effectively.

6. Conclusion

Quantum computing's rapid advancement, exemplified by Shor's Algorithm, poses significant challenges to current cybersecurity protocols, especially in encryption and secure communications. While quantum-safe cryptography and quantum key distribution offer promising defenses, integrating these solutions effectively remains a critical task. Ongoing research and collaboration are essential to develop strong post-quantum cryptographic methods and adaptive cybersecurity strategies. These efforts are essential for mitigating the emerging threats posed by quantum computing and ensuring the continued security and resilience of digital infrastructures worldwide.

7. References

- [1] S. S. Gill *et al.*, "Quantum computing: A taxonomy, systematic review and future directions," *Software: Practice and Experience*, vol. 52, no. 1, pp. 66-114, 2022.
- [2] A. Wicaksana, A. Anthony, and A. W. Wicaksono, "Web-app realization of Shor's quantum factoring algorithm and Grover's quantum search algorithm," *TELKOMNIKA (Telecommunication Computing Electronics and Control)*, vol. 18, no. 3, pp. 1319-1330, 2020.
- [3] Y. Cao *et al.*, "Quantum chemistry in the age of quantum computing," *Chemical reviews*, vol. 119, no. 19, pp. 10856-10915, 2019.
- [4] B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, "Quantum algorithms for quantum chemistry and quantum materials science," *Chemical Reviews*, vol. 120, no. 22, pp. 12685-12717, 2020.
- [5] L. B. Oftelie, M. Urbanek, M. Metcalf, J. Carter, A. F. Kemper, and W. A. de Jong, "Simulating quantum materials with digital quantum computers," *Quantum Science and Technology*, vol. 6, no. 4, p. 043002, 2021.

- [6] J. Preskill, "Quantum computing in the NISQ era and beyond," *Quantum,* vol. 2, p. 79, 2018.
- [7] M. Nahed and S. Alawneh, "Cybersecurity in a post-quantum world: How quantum computing will forever change the world of cybersecurity," *American Journal of Electrical and Computer Engineering*, vol. 12, no. 1, pp. 81-93, 2020.
- [8] E. D. Peet and M. J. Vermeer, "Securing communications in the quantum computing age: managing the risks to encryption," 2020.
- [9] J. Ahn *et al.*, "Toward quantum secured distributed energy resources: Adoption of post-quantum cryptography (pqc) and quantum key distribution (qkd)," *Energies*, vol. 15, no. 3, p. 714, 2022.
- [10] O. Efijemue *et al.*, "Cybersecurity strategies for safeguarding customers data and preventing financial fraud in the United States financial sectors," *International Journal of Soft Computing*, vol. 14, no. 3, pp. 10-5121, 2023.
- [11] J. K. Lee, Y. Chang, H. Y. Kwon, and B. Kim, "Reconciliation of privacy with preventive cybersecurity: The bright internet approach," *Information Systems Frontiers*, vol. 22, pp. 45-57, 2020.
- [12] Y. Wang, H. Zhang, and H. Wang, "Quantum polynomial-time fixed-point attack for RSA," *China Communications*, vol. 15, no. 2, pp. 25-32, 2018.
- [13] Y. Baseri, V. Chouhan, and A. Ghorbani, "Cybersecurity in the Quantum Era: Assessing the Impact of Quantum Computing on Infrastructure," *arXiv preprint arXiv:2404.10659*, 2024.
- [14] O. A. Ajala, C. A. Arinze, O. C. Ofodile, C. C. Okoye, and A. I. Daraojimba, "Exploring and reviewing the potential of quantum computing in enhancing cybersecurity encryption methods," 2024.
- [15] I. H. Sarker, A. Kayes, S. Badsha, H. Alqahtani, P. Watters, and A. Ng, "Cybersecurity data science: an overview from machine learning perspective," *Journal of Big data*, vol. 7, pp. 1-29, 2020.
- [16] A. Bayerstadler *et al.*, "Industry quantum computing applications," *EPJ Quantum Technology*, vol. 8, no. 1, p. 25, 2021.
- [17] C. Wetterich, "Quantum computing with classical bits," *Nuclear Physics B*, vol. 948, p. 114776, 2019.
- [18] L.-F. Qiao *et al.*, "Entanglement activation from quantum coherence and superposition," *Physical Review A*, vol. 98, no. 5, p. 052351, 2018.
- [19] V. Hassija *et al.*, "Present landscape of quantum computing," *IET Quantum Communication*, vol. 1, no. 2, pp. 42-48, 2020.
- [20] A. D. Córcoles *et al.*, "Challenges and opportunities of near-term quantum computing systems," *Proceedings of the IEEE*, vol. 108, no. 8, pp. 1338-1352, 2019.
- [21] C. Ugwuishiwu, U. Orji, C. Ugwu, and C. Asogwa, "An overview of quantum cryptography and shor's algorithm," *Int. J. Adv. Trends Comput. Sci. Eng*, vol. 9, no. 5, 2020.

- [22] S. Sharma, K. Ramkumar, A. Kaur, T. Hasija, S. Mittal, and B. Singh, "Postquantum cryptography: A solution to the challenges of classical encryption algorithms," *Modern Electronics Devices and Communication Systems: Select Proceedings of MEDCOM 2021*, pp. 23-38, 2023.
- [23] A. Hamza and B. Kumar, "A review paper on DES, AES, RSA encryption standards," in 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART), 2020: IEEE, pp. 333-338.
- [24] F. Fauzi and M. Fachry, "Utilization of the RSA Algorim in Business Communication in Making e-Commerce Applications," *Al'adzkiya International of Computer Science and Information Technology (AIoCSIT) Journal*, vol. 1, no. 1, 2020.
- [25] C. Clivati *et al.*, "Coherent phase transfer for real-world twin-field quantum key distribution," *Nature communications,* vol. 13, no. 1, p. 157, 2022.
- [26] S. Das, S. Bäuml, M. Winczewski, and K. Horodecki, "Universal limitations on quantum key distribution over a network," *Physical Review X*, vol. 11, no. 4, p. 041016, 2021.
- [27] N. Kappert, E. Karger, and M. Kureljusic, "Quantum Computing-The Impending End for the Blockchain?," in *PACIS*, 2021, p. 114.
- [28] J. R. Lindsay, "Surviving the quantum cryptocalypse," *Strategic Studies Quarterly*, vol. 14, no. 2, pp. 49-73, 2020.
- [29] S. H. Almotiri, M. Nadeem, M. A. Al Ghamdi, and R. A. Khan, "Analytic review of healthcare software by using quantum computing security techniques," *International Journal of Fuzzy Logic and Intelligent Systems*, vol. 23, no. 3, pp. 336-352, 2023.
- [30] V. Bhatia and K. Ramkumar, "An efficient quantum computing technique for cracking RSA using Shor's algorithm," in *2020 IEEE 5th international conference on computing communication and automation (ICCCA)*, 2020: IEEE, pp. 89-94.
- [31] R. Thombre and B. Jajodia, "Experimental analysis of attacks on rsa & rabin cryptosystems using quantum shor's algorithm," in *Proceedings of International Conference on Women Researchers in Electronics and Computing*, 2021.
- [32] O. Lee and T. Vergoossen, "An updated analysis of satellite quantum-key distribution missions," *arXiv preprint arXiv:1909.13061*, 2019.
- [33] S. Holmes and L. Chen, "Assessment of quantum threat to bitcoin and derived cryptocurrencies," *Cryptology ePrint Archive*, 2021.
- [34] M. Allende *et al.*, "Quantum-resistance in blockchain networks," *Scientific Reports*, vol. 13, no. 1, p. 5664, 2023.
- [35] I. Naseer, "Cyber Defense for Data Protection and Enhancing Cyber Security Networks for Military and Government Organizations," *MZ Computing Journal*, vol. 1, no. 1, 2020.

[36] R. Ur Rasool, H. F. Ahmad, W. Rafique, A. Qayyum, J. Qadir, and Z. Anwar, "Quantum computing for healthcare: A review," *Future Internet*, vol. 15, no. 3, p. 94, 2023.